Telegram Group & Telegram Channel
Mathematics for Data Science Roadmap

Mathematics is the backbone of data science, machine learning, and AI. This roadmap covers essential topics in a structured way.


---

1. Prerequisites

Basic Arithmetic (Addition, Multiplication, etc.)
Order of Operations (BODMAS/PEMDAS)
Basic Algebra (Equations, Inequalities)
Logical Reasoning (AND, OR, XOR, etc.)


---

2. Linear Algebra (For ML & Deep Learning)

🔹 Vectors & Matrices (Dot Product, Transpose, Inverse)
🔹 Linear Transformations (Eigenvalues, Eigenvectors, Determinants)
🔹 Applications: PCA, SVD, Neural Networks

📌 Resources: "Linear Algebra Done Right" – Axler, 3Blue1Brown Videos


---

3. Probability & Statistics (For Data Analysis & ML)

🔹 Probability: Bayes’ Theorem, Distributions (Normal, Poisson)
🔹 Statistics: Mean, Variance, Hypothesis Testing, Regression
🔹 Applications: A/B Testing, Feature Selection

📌 Resources: "Think Stats" – Allen Downey, MIT OCW


---

4. Calculus (For Optimization & Deep Learning)

🔹 Differentiation: Chain Rule, Partial Derivatives
🔹 Integration: Definite & Indefinite Integrals
🔹 Vector Calculus: Gradients, Jacobian, Hessian
🔹 Applications: Gradient Descent, Backpropagation

📌 Resources: "Calculus" – James Stewart, Stanford ML Course


---

5. Discrete Mathematics (For Algorithms & Graphs)

🔹 Combinatorics: Permutations, Combinations
🔹 Graph Theory: Adjacency Matrices, Dijkstra’s Algorithm
🔹 Set Theory & Logic: Boolean Algebra, Induction

📌 Resources: "Discrete Mathematics and Its Applications" – Rosen


---

6. Optimization (For Model Training & Tuning)

🔹 Gradient Descent & Variants (SGD, Adam, RMSProp)
🔹 Convex Optimization
🔹 Lagrange Multipliers

📌 Resources: "Convex Optimization" – Stephen Boyd


---

7. Information Theory (For Feature Engineering & Model Compression)

🔹 Entropy & Information Gain (Decision Trees)
🔹 Kullback-Leibler Divergence (Distribution Comparison)
🔹 Shannon’s Theorem (Data Compression)

📌 Resources: "Elements of Information Theory" – Cover & Thomas


---

8. Advanced Topics (For AI & Reinforcement Learning)

🔹 Fourier Transforms (Signal Processing, NLP)
🔹 Markov Decision Processes (MDPs) (Reinforcement Learning)
🔹 Bayesian Statistics & Probabilistic Graphical Models

📌 Resources: "Pattern Recognition and Machine Learning" – Bishop


---

Learning Path

🔰 Beginner:

Focus on Probability, Statistics, and Linear Algebra
Learn NumPy, Pandas, Matplotlib

Intermediate:

Study Calculus & Optimization
Apply concepts in ML (Scikit-learn, TensorFlow, PyTorch)

🚀 Advanced:

Explore Discrete Math, Information Theory, and AI models
Work on Deep Learning & Reinforcement Learning projects

💡 Tip: Solve problems on Kaggle, Leetcode, Project Euler and watch 3Blue1Brown, MIT OCW videos.



tg-me.com/datascience_bds/779
Create:
Last Update:

Mathematics for Data Science Roadmap

Mathematics is the backbone of data science, machine learning, and AI. This roadmap covers essential topics in a structured way.


---

1. Prerequisites

Basic Arithmetic (Addition, Multiplication, etc.)
Order of Operations (BODMAS/PEMDAS)
Basic Algebra (Equations, Inequalities)
Logical Reasoning (AND, OR, XOR, etc.)


---

2. Linear Algebra (For ML & Deep Learning)

🔹 Vectors & Matrices (Dot Product, Transpose, Inverse)
🔹 Linear Transformations (Eigenvalues, Eigenvectors, Determinants)
🔹 Applications: PCA, SVD, Neural Networks

📌 Resources: "Linear Algebra Done Right" – Axler, 3Blue1Brown Videos


---

3. Probability & Statistics (For Data Analysis & ML)

🔹 Probability: Bayes’ Theorem, Distributions (Normal, Poisson)
🔹 Statistics: Mean, Variance, Hypothesis Testing, Regression
🔹 Applications: A/B Testing, Feature Selection

📌 Resources: "Think Stats" – Allen Downey, MIT OCW


---

4. Calculus (For Optimization & Deep Learning)

🔹 Differentiation: Chain Rule, Partial Derivatives
🔹 Integration: Definite & Indefinite Integrals
🔹 Vector Calculus: Gradients, Jacobian, Hessian
🔹 Applications: Gradient Descent, Backpropagation

📌 Resources: "Calculus" – James Stewart, Stanford ML Course


---

5. Discrete Mathematics (For Algorithms & Graphs)

🔹 Combinatorics: Permutations, Combinations
🔹 Graph Theory: Adjacency Matrices, Dijkstra’s Algorithm
🔹 Set Theory & Logic: Boolean Algebra, Induction

📌 Resources: "Discrete Mathematics and Its Applications" – Rosen


---

6. Optimization (For Model Training & Tuning)

🔹 Gradient Descent & Variants (SGD, Adam, RMSProp)
🔹 Convex Optimization
🔹 Lagrange Multipliers

📌 Resources: "Convex Optimization" – Stephen Boyd


---

7. Information Theory (For Feature Engineering & Model Compression)

🔹 Entropy & Information Gain (Decision Trees)
🔹 Kullback-Leibler Divergence (Distribution Comparison)
🔹 Shannon’s Theorem (Data Compression)

📌 Resources: "Elements of Information Theory" – Cover & Thomas


---

8. Advanced Topics (For AI & Reinforcement Learning)

🔹 Fourier Transforms (Signal Processing, NLP)
🔹 Markov Decision Processes (MDPs) (Reinforcement Learning)
🔹 Bayesian Statistics & Probabilistic Graphical Models

📌 Resources: "Pattern Recognition and Machine Learning" – Bishop


---

Learning Path

🔰 Beginner:

Focus on Probability, Statistics, and Linear Algebra
Learn NumPy, Pandas, Matplotlib

Intermediate:

Study Calculus & Optimization
Apply concepts in ML (Scikit-learn, TensorFlow, PyTorch)

🚀 Advanced:

Explore Discrete Math, Information Theory, and AI models
Work on Deep Learning & Reinforcement Learning projects

💡 Tip: Solve problems on Kaggle, Leetcode, Project Euler and watch 3Blue1Brown, MIT OCW videos.

BY Data science/ML/AI


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/datascience_bds/779

View MORE
Open in Telegram


Data science ML AI Telegram | DID YOU KNOW?

Date: |

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

Data science ML AI from us


Telegram Data science/ML/AI
FROM USA